If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2=3q
We move all terms to the left:
q^2-(3q)=0
a = 1; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*1}=\frac{0}{2} =0 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*1}=\frac{6}{2} =3 $
| 1-8n=121 | | 6t–3=21 | | 18x-2+90+5x=180 | | 2x+7/4-x/3=-1/3 | | 3n-7=2n+5;n=10 | | 70+2x+17+8x+3=180 | | 3(x^2+2x)+1=10 | | 19x^2+152=0 | | 2+3x+7x=2 | | x+78+40+x+78=180 | | -5(r+6)=-63 | | 19x2+152=0 | | 7=13−3r | | 9n-1=170 | | 56+9x+1+6x+3=180 | | 3y+10=-44 | | -8-7p=20 | | 41x+2.14=4.60 | | 63+x+x+43+80=180 | | −7x2+12x=10 | | -5-9p=76 | | 5(r-60)+5r=4000 | | 9/x=108 | | 33/5+x=8 | | 3+5n=1+8n+3 | | w+-26=45 | | 3x+14+7x-4+50=180 | | 7y+2y(y-9)=5(y+1)-2 | | 51=3/k | | v+4/5=3 | | -6x-9=6 | | 4y-8+y+46=5y+40-2y |